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Abstract

This problem deals with steady driven pressure flow and heat transfer of electro-magneto-

hydrodynamic micro-pump of third grade fluids between two micro-parallel plates embedded

in a porous medium. The effect of thermal radiation and electro-kinetic have been taken

into account. The flow forced by the Lorentz force, produced by the interaction of a vertical

magnetic field and an externally horizontal imposed electrical field, is assumed to be unidirec-

tional and one dimensional. Based upon the velocity field, the thermally fully developed heat

transfer with radiation effect are analyzed by taking the viscous dissipation, the volumetric

heat generation due to Joule heating effect and electromagnetic couple effect into account.

Analytical solutions corresponding to the fluid velocity and temperature distribution are

obtained in series forms, in the assumption that the non-Newtonian viscoelastic parameter

has small values. The effects of permeability of the porous medium K, the dimensionless

electrical strength parameter H, Hartmann number Ha, non-Newtonian parameter Lamda,

constant pressure P , thermal radiation Nr and non-dimensional parameter Brinkman num-

ber gamma1 on the velocity and temperature are investigated graphically and discussed in

detail.

Keywords: Electro-magneto-hydrodynamic (EMHD), Micro-pump of third grade fluid,

Porous microchannel, thermo-fluidic transport,

1. Introduction

Microfluidics found to be important role in many technological processes and applica-

tions, involving detection, separation and analysis of chemical and biological samples, micro-

electro-mechanical systems(MEMS), and material processing and biotechnology. Transport

phenomena at the micro-scale level reveal many features that are not observed in the macro-
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scale devices. Mirza et al. [10] have studied the blood flow along with particles suspension

through microcapillary using the electro-magneto-hydrodynamic (EMH) approach. They

have obtained analytical solutions for the governing model equations analytically using the

Laplace and finite Hankel transforms. Results showed that the motion of blood and particles

are controlled by regulating the electrokinetic and magnetic parameters. Sinha et al. [13]

have presented a vivid theoretical study on heat transfer feature together with fully devel-

oped EMH flow of blood through a capillary, having electrokinetic effects with emphases

on constant heat flux at the wall. Effects of thermal radiation and velocity slip condition

were taken into consideration. A mathematical model was developed for Joule heating in

electro-osmotic flow, including the Poisson-Boltzmann equation, the momentum equation

and the energy equation. Results showed that the temperature of blood can be controlled

by regulating Joule heating parameter. Rokni et al. [11]have studied the effects of EMH on

both nanofluid flow and heat transfer characteristics in a rotating system. The governing

equations were solved using the fourth-order Runge-Kutta method. The Effects of electric,

magnetic, Reynolds number and rotation parameters on skin friction coefficient and rate of

heat transfer were considered. Obtained results indicated that the Nusselt number increases

with an increase in the magnetic parameter, electric parameter and Reynolds number but it

decreases with an increase in rotation parameter. Jian et al. [8] have analyzed the analytical

solution of transient rotating EMH flow through a parallel micro-channel. Analytical inquiry

for combined transient rotating of both electrically conducting incompressible and viscous

fluid between two slit micro parallel plates were performed using the method of separation of

variables. Comparison of theoretical results with related experimental data was performed

when rotation effect is lacked. Ko et al. [9] have studied, the non-reflective boundary condi-

tions for the EMH flow simulation. EMH model was expressed in standard form, that is in

Cartesian coordinates for both with linear constitutive relations and artificial compressibil-

ity. It was found that there is a strong mutual interactions between the flow field and the

electromagnetic field. Chakraborty et al. [4] have analyzed critically the characteristics of

heat transfer associated with thermal developed combined EMH flows through narrow flow

channels, with emphases to electrokinetics effects, for the constant wall heat flux condition.

The liquid flow was activated by the combination of imposed pressure-gradient, electrokinetic

effects and electromagnetic interactions. Result showed that for the development of state-of-

the-art electro-magneto-mechanical devices, with improved efficiency and functionality, the
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applications in the field of micro-scale thermal management were required. Zhao et al. [15]

have investigated the characteristics of heat transfer of thermally developed nanofluid flow

through a parallel microchannel plate under the combined influences of externally applied

axial pressure gradient and transverse magnetic field.They have obtained analytical solutions

for the EMH flow in the microchannels using the Debye-Huckel linearization. Results for

pertinent dimensionless parameters on the velocity, temperature and Nusselt number were

discussed and presented graphically. Recently, Wang et al. [14] have analyzed the problem

of EMH micro-pump of third grade fluids between two micro-parallel plates. They obtained

analytical solutions for the velocity and temperature using both perturbation techniques and

the Chebyshev spectral collocation method. The influence of magnetic and electric fields on

the velocity and temperature distribution have been analyzed.

A more general form of EMH flow and heat transfer of third-grade fluids problems can be

derived when fluid porosity and thermal radiation in the micro-channel are considered. The

governing model equations must be modified with an additional new term in the momentum

equation and energy equation to represent respectively, the fluid porosity and radiation

terms. Recently, Wang et al. [14] derived an analytical solution for the steady EMH flow of

third-grade fluid and heat transfer when fluid porosity and thermal radiation in the micro-

channel are not considered. They used a perturbation method combined with finite difference

method to solve the governing flow and energy equations. However, the corresponding

solutions of the [14] problem for the electro-magneto-hydrodynamic flow of third-grade fluid

and heat transfer in a porous medium with radiation effects are not reported so far. Hence,

this is the motivation of the present work.

The study of EMH flow and heat transfer through a porous medium with radiation

effects has become an active area of research due to its varied applications in science and

engineering. A few of these applications are found in micro-fluidic devices. These micro-scale

devices are candidates for applications in heat transfer augmentation, micro-electronics and

micro-electro-mechanical systems (MEMS), miniaturized chemical reactors and combustors,

aerospace, and biomedical systems. The aim of this article is to extend the analysis of Wang

et al. [14] in two directions. These are (i) to take into account the porous medium and (ii) to

consider radiation effects. More exactly, the analytical solutions of the steady EMH flow and

heat transfer of third-grade fluid in a porous medium with radiation effect using perturbation

technique are presented. An important feature of this technique lies in the fact that the
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approximate solutions to the fluid velocity, temperature distribution are obtained in series

forms under the assumption small value of non-Newtonian viscous-elastic parameter. The

rest of the paper is arranged as follows: Section 2 gives the mathematical formulation of the

problem. Section 3 contains the analytical solutions for the fluid velocity and temperature

distribution. In Section 4 the results are graphically presented and discussed for various

parameters of physical interest, followed by the conclusions in Section 5.

2. Problem formulation

The steady fully developed flow of incompressible third-grade fluid through a rectangular

microchannel in the presence of electric and magnetic fields is considered. A schematic figure

of the problem, including the mechanical physics in the cartesian coordinates (x, y, z) is

shown in Fig.1, where x-axis and z-axis are tangential to the charged surface and y-axis is

perpendicular to the charged plates. The pressure driven flow is also driven by Lorentz force

along x direction which is produced by the externally imposed electrical fields of intensity

E inverse z direction and applied magnetic field of flux density B in the y direction. In the

present study, the length of the porous microchannel in x-axis is L, the widthin z-axis is W

and the height is 2h (since the typical height of the microchannel h is 100 − 200µm). It is

supposed that both height 2h and width W are much less than the length L, i.e., 2h ≪ L

and W ≪ L [14]. The 2D rectangular duct flow reduces to a 1D micro-parallel channel flow

problem and the velocity becomes independent of the z-coordinate.

The fluid velocity of the flow is governed by continuity equation and Navier–Stokes

equation:

∇−→u = 0, (1)

ρ
∂−→u
∂t

= −∇p+ µ∇2−→τ +
−→
F em, (2)

where ρ is the fluid density, −→u is the velocity field, t is the time, p is the pressure, µ is

dynamic viscosity, −→τ is the stress tensor and
−→
F em is the net body force per unit volume

acting on the fluid, which is essentially contributed by the electrical force, Lorentz force

acting on the system and Darcy’s resistance, can be written as:

−→
F em =

−→
J ×

−→
B +

−→
R, (3)

where
−→
B is the magnetic field along the y direction and is assumed constant of magnitude

B,
−→
R is the Darcy’s resistance to the flow in the porous medium and

−→
J is the local ion
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current density obtained from the Ohm’s law in a moving frame:

−→
J = σ

(−→
E +−→u ×

−→
B
)
, (4)

where σ is the electrical conductivity of the fluid and
−→
E is the electric field inverse z direction

and assumed to be a constant E.

For third-grade fluid, the extra Cauchy stress tensor is given by [2, 12, 7, 14]:

−→τ = −pI + µ
−→
A 1 + α1

−→
A 2 + α2

−→
A 2

1 + β1
−→
A 3 + β2

(−→
A 1

−→
A 2 +

−→
A 2

−→
A 1

)
+ β3

(
tr
−→
A 2

1

)−→
A 1, (5)

where µ is the viscosity of the fluid and α1, α2, β1, β2,β3 are the material constants of the

third grade fluid.
−→
A 1,

−→
A 2 and

−→
A 3 are kinematical tensors and can be expressed as

−→
A 1 = (grad−→u ) + (grad−→u )

T
(6)

−→
A n =

d
−→
A n−1

dt
+
−→
A n−1 (grad

−→u ) +
−→
A n−1 (grad

−→u )
T −→
A n−1, n = 2, 3, ... (7)

The Darcy’s resistance can be interpreted as a measure of the resistance to the flow in

the porous medium. For steady unidirectional flow over the rigid plate, the x-component

expression of Rx for a third-grade fluids is given by [5, 3, 6]

Rx = − ϕ

K1

[
µ+ 2 (β2 + β3)

(
du

dy

)2
]
u, (8)

where ϕ is the porosity of the porous medium and .K1 is the is the permeability of the porous

medium.

The energy equation including volumetric joule heating, electromagnetic couple effect

and stress tensor for viscouelastic fluid can be used to give the temperature distribution in

the microchannel [8, 1, 14]

ρcp

(
∂T

∂t
+−→u ∂T

∂X

)
= −→τ : (grad−→u )−∇q +

−→
J
−→
J

σ
. (9)

2.1. Analytical solution of velocity field

Using the above assumption, the velocity is along x-axis and can be expressed as:

−→u = [u (y) , 0, 0] (10)

Substituting Eqs. (3)-(8) and (10) into the momentum Eq. (2), we get:

dp

dx
= µ

d2u

dy2
+ 2 (β2 + β3)

d

dy

[(
du

dy

)3
]

− ϕ

K1

[
µ+ 2 (β2 + β3)

(
du

dy

)2
]
u− σB2u+ σBE, (11)
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dp

dy
= 2 (α1 + α2)

d

dy

[(
du

dy

)2
]
, (12)

dp

dz
= 0. (13)

Considering the pressure gradient along along x-axis, Eqs. (11)-(13) reduce to following:

µ
d2u

dy2
+ 2 (β2 + β3)

d

dy

[(
du

dy

)3
]

− ϕ

K1

[
µ+ 2 (β2 + β3)

(
du

dy

)2
]
u− σB2u+ σBE +

(
−dp

dx

)
= 0. (14)

The boundary condition subjected to Eq. (14) is given by:

u (y) = 0 at y = ±h. (15)

Consider the following dimensionless parameters:

y∗ =
y

h
, u∗ =

u

ν/h
, Λ =

(β2 + β3) ν
2

µh4
, Ha = Bh

√
σ

µ
, H =

σBEh3

µν
,

1

K
=

ϕh2

K1

. (16)

We obtained the following dimensionless problem (dropping the ∗ notation):

d2u

dy2
+ 6Λ

d

dy

[(
du

dy

)3
]
− u

K

[
1 + 2Λ

(
du

dy

)2
]
−Ha2u+H + P = 0 (17)

u (y) = 0 at y = ±1, (18)

where Ha is Hartmann number, which gives an estimate of the magnetic forces compared to

the viscous forces and H is the dimensionless parameter related to the electrical strength.

In order to derive the solution by perturbation method, we assume that 0 < Λ ≪ 1 so

that we assume the solution for velocity in the following form

u (y) = u0 + Λu1 + 0
(
Λ2
)
. (19)

Substitution Eq. (19) into Eqs. (17), (18) and separating at each order of Λ, we obtain the

following equations and boundary conditions:

Order zero:
∂2u0

∂y2
−
(
Ha2 +

1

K

)
u0 + P +H = 0, (20)

u0 (±1) = 0. (21)
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Order one

d2u1

dy2
+ 6Λ

(
du0

dy

)2(
d2u0

dy2

)
−Ha2u1 −

1

K

(
(2u0)

(
du0

dy

)2

+ u1

)
, (22)

u1 (±1) = 0. (23)

Now by using DSolve algorithm in a symbolic computer algebra package MATHEMATICA,

the solutions of the boundary valued problems Eqs. (20)-(23) are:

u0 = K (H + P )

(
cos
[√

−1−Ha2x√
x

]
− cos

[√
−1−Ha2xy√

x

])
sec
[√

−1−Ha2x√
x

]
1 +Ha2K

(24)

u1 =
−1

96 (1 +Ha2K)3
(K

3
2 (H + P )3 sec

[√
−1−Ha2K√

K

]4
{
2
√
K(14 + 9Ha2K) cos

[√
−1−Ha2K√

K

]3
cos

[√
−1−Ha2Ky√

K

]

−32
√
K cos

[√
−1−Ha2K√

K

]2
(3 + cos

[
2
√
−1−Ha2Ky√

K

]}

+24
√
−1−Ha2K

(
2 + 3Ha2K

)
cos

[√
−1−Ha2Ky√

K

]
sin

[√
−1−Ha2K√

K

]
− cos

[√
−1−Ha2K√

K

]
(6
√
K(2 + 3Ha2K) cos

[√
−1−Ha2Ky√

K

]3
+
√
K cos

[√
−1−Ha2Ky√

K

]
(−88− 3(14 + 9Ha2K) cos

[
2
√
−1−Ha2K√

K

]
+9(2 + 3Ha2K) cos

[
2
√
−1−Ha2Ky√

K

]
)

+24
√
−1−Ha2K(2 + 3Ha2K)y sin

[√
−1−Ha2Ky√

K

]
))) (25)

It is important mentioning that when K = 0 (non-porous medium) and P = O (non-

pressure gradient), Eqs. (24) and (25) reduce to those found by [14].

3. Electro-magneto-hydrodynamic heat transfer analysis

The second novelty of the present study is to delineate the thermal radiation character-

istics associated with EMH flow of third-grade fluid through a micro-channel, the solution

of the energy equation is integral to the present analysis. The energy equation associated

with third-grade fluid with radiation effects is given by:

ρcp

(
∂T

∂t
+ u

∂T

∂X

)
= Kth

∂2T

∂y2
−∂qy

∂y
+σ
(
E2 +B2u2 − 2EBu

)
+µ

(
∂u

∂y

)2

+2 (β2 + β3)

(
∂u

∂y

)4

,

(26)
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where cp is the specific heat at constant pressure, T is the temperature, Kth is the thermal

conductivity, qy is the radiative heat flux.

It should be noted that in Eq. (26), the second term on the right hand side represents the

contribution due to thermal radiation, the third term represents a volumetric heat generation

due to Joule heating and the last two terms represent a local volumetric heating due to

viscoelastic dissipation.

The boundary conditions for the energy equation are:

Kth
dT

dy
= qs or T = Ts at y = ±h. (27)

The radiative heat flux according to the Rosseland approximation is given by

qy = − 4σ∗

3K∗
∂T 4

∂y
, (28)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorbtion coefficient. Sup-

pose that the small variation between fluid temperature T and wall temperature Ts, T
4

can be expressed as a linear combination of the temperature. Hence, we can write T 4 in a

Taylor’s series expansion about Ts as follows:

T 4 = T 4
s + 4T 3

s (T − Ts) + 6T 2
s (T − Ts)

2 + ... (29)

Neglecting the higher order terms beyond the first degree in (T − Ts) , we obtain

T 4 = 4T 3
s T − 3T 4

s . (30)

Using Eqs. (28) and (30), Eqs. (26) yields:

(1 +Nr)
∂2T

∂y2
+ µ

(
∂u

∂y

)2

+ 2 (β2 + β3)

(
∂u

∂y

)4

+ σ
(
E2 +B2u2 − 2EBu

)
= 0 (31)

where Nr =
K∗Kth

4σ∗T̄ 3
s

is the radiation parameter

Introducing a dimensionless temperature T ∗ as:

T ∗ =
Ts − T

Ts − Tm

, (32)

where Tm is the mean tempreture and Ts is the surface temperatures.

Using Eqs. (32) and (16), we obtained the dimensionless energy equation as:

(1 +Nr)
∂2T

∂y2
+ γ1

(
∂u

∂y

)2

+ 2Λγ1

(
∂u

∂y

)4

+ γ1Ha2u2 − γ2u+ γ3 = 0, (33)
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where γ1 =
µν2

h2Kth (Tm − Ts)
is the Brinkman number which measure the ratio of heat

produced by viscous dissipation to heat transported by molecular conduction, γ2 =
νh (2σEB +M)

Kth (Tm − Ts)
is the ratio of heat generated by the interaction of the electrical and mag-

netic fields to heat conduction and γ3 =
σh2E2

Kth (Tm − Ts)
is the ratio of Joule heating to heat

conduction.

The corresponding boundary conditions of the dimensionless energy equation are

T (y) = 0; y = ±1. (34)

3.1. Analytical solution of temperature

Following the same procedure as for obtaining the velocity profile, the temperature profile

can be achieved similarly. Here we assume the solution of the following form:

T = T0 + ΛT1 + ... (35)

Inserting Eq. (35) into (33), (34) and separating at each order of Λ yields

Zero Order:

(1 +Nr)
∂2T0

∂y2
+ γ1

(
∂u0

∂y

)2

+ γ1Ha2u2
0 − γ2u0 + γ3 = 0. (36)

T0 (±1) = 0. (37)

Fist Order:

(1 +Nr)
∂2T1

∂y2
+ γ1

(
∂u1

∂y

)2

+ 2Λγ1

(
∂u1

∂y

)4

+ γ1Ha2u2
1 − γ2u1 = 0, (38)

T1(±1) = 0. (39)

With the solutions (24)-(25) known then (36)-(39) can be elegantly solved. MATHEMATICA

software has been applied to sove Eqs. (36)-(39). The huge size of the solution suggests that

only graphical solutions can be presented as shown in Figures 7–10.

4. Results and discussions

In this section, we present graphically the numerical results computed for fluid velocity

and temperature distribution in the cases of porosity and radiation effects. A detailed

discussion regarding the results analyzed in this investigation is provided. The results for
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the steady velocities in the case of EMH flow are shown in Figures 2-4 and for the temperature

distribution are displayed in Figures 5-10.

Figure 2 illustrates the influence of permeability parameter K on the velocity profiles for

fixed electric H, Hartmann number Ha and constant pressure P when micro-channel shows

small and large values of K. It is observed that for small values of K, the horizontal velocity

increases with an increase in K. A similar behavior was also expected when K is large,

because an increase in the permeability of the porous medium reduces the drag force, which

tends to enhance the magnitude of the horizontal velocity. Figure 3 shows the influences of

constant pressure gradient P on the velocity profiles for fixed electrokinetic parameter H,

magnetic parameter Ha when micro-channel shows small and large values of K. It is noted

that for small and large values of P , the horizontal velocity increases with an increase in P in

the boundary layer region. Thus, increasing the constant pressure gradient in the boundary

layer region yields an effect same to that of the permeability of the porous medium.

Figure 4 exhibits the influences of the dimensionless electrical strength parameter H

(H = 0.5, 1.0, 1.5) on velocity profile when Ha = 1, P = 1, L = 0.01, for the cases of small

permeability (K = 0.01) and large permeability (K = 1). It should be observed that an

increase in velocity occurs with an increase in electrical field strength parameter H for both

small and large values of K. This is due to fact that larger electrical field strength parameter

H produces larger aiding force in Eq.(9) and gives rise to larger EMHD velocity in Figure 4.

It is observed from Figure 5 that fluid velocity decreases on increasing the Hartmann number

Ha in the boundary layer region. This is because that magnetic field decelerates fluid velocity

for both small and large values of K. This is due to fact that the application of magnetic

field to an electrically conducting fluid produces a resistive force called a Lorentz force. So,

the higher the values of Ha, the more prominent is the reduction in velocity in the boundary

layer region. Thus, increasing the electrical strength parameter H yields an effect opposite

to that of the Hartmann number Ha.

Figure 6 describes the effects of non-Newtonian viscoelastic parameter Λ (Λ =

0, 0.01, 0.03) on the fluid velocity profile for the cases of small permeability (K = 0.01)

and large permeability (K = 1) when Ha = 1, H = 2, P = 1, for the cases of small perme-

ability (K = 0.01) and large permeability (K = 1). The non-Newtonian property of the fluid

decreases with increasing Λ. From this figure, we can compare the velocity of the third-grade

fluid with the velocity corresponding to the non-Newtonian second-grade fluid (Λ = 0). For
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the large and small values of K, the second-grade non-Newtonian fluid flows faster than the

third-grade fluid. This is due to the fact that the viscosity of third-grade fluids depending

on the non-Newtonian parameter increases with Λ.

Figure 7 demonstrates the influences of radiation on fluid temperature whenHa = 1, H =

2, P = 1, γ1 = 0.01, γ2 = 0.2, γ3 = 0.2, L = 0.01,and K = 0.1 for the cases of small values of

Nr and large values of Nr. It is observed from Fig. 7 that fluid temperature increases on

increasing radiation parameter Nr in the boundary layer region which implies that radiation

tends to enhance fluid temperature. Figure 8 exhibits the influences of the dimensionless

electrical strength parameter H (0.5, 1.0, and 1.5) on temperature profile. It should be

observed that an increase in temperature occurs with an increase in electrical field strength

parameter H. This behavior is similar in the case of fluid velocity. Furthermore, the larger

EMHD velocity enhances the advection heat transfer, thereby reducing the local temperature

but thereafter, the magnitude of the term becomes larger than the magnitude of the term.

Finally, larger dimensionless temperature can be produced with the temperature profiles as

in Fig. 8.

The effects of Hartmann number Ha (0.5, 1.5, and 2.5) on the temperature profiles are

shown in Figure 9. From this picture, it can be found that magnetic field strength (Ha)

contributes to slow down the temperature and the maximum temperature can be obtained

near the center of the microchannel. This due to the fact that the Lorentz force is produced

in axial direction. Therefore, the reduced flow velocity reduces the advection transport of

thermal energy from the channel walls to the fluid, thereafter, the local temperature rises

whereas the magnitude of the term becomes smaller than the magnitude of the term. Thus,

the dimensionless temperature decreases obviously with Ha. Figure 10 illustrates the effect

of the Brinkman number γ1(0.05, 0.1, 0.2) on the temperature through the microchannel. It

is observed that the value of Brinkman number has an accelerating effect on the dimension-

less temperature. The reason is that the viscous dissipation behaves like an energy source

increasing the temperature of the fluid especially near the walls.

5. Conclusions

The main focus of the present investigation was to determine the analytical solutions for

the problem of steady EMH micro-pump of third grade fluid flow and heat transfer through

a porous micro-channel with thermal radiation and magnetic field effects. The expressions of
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velocity and temperature distribution are obtained in series forms under the assumption that

the non-Newtonian viscoelastic parameter has small values. The present solutions are more

general and the existing solutions in the literature appear as the limiting cases. Furthermore,

flow and heat transfer results for a range of values of the pertinent parameters have been

reported. The significant findings are summarized below:

• with increasing the Hartmann number Ha causes Lorenz force to increase and leads to

a substantial suppression of the convection, then the velocity and temperature decrease

for given values of K, Λ and H.

• the permeability of the porous medium K shows opposite behavior to that of the

Hartmann number in the boundary layer region.

• for small and large values of permeability of the porous medium K, the fluid velocity

increases in the boundary layer region.

• increasing the constant pressure gradient P in the boundary layer region yields an

effect same to that of the permeability of the porous medium K.

• with increasing the dimensionless electrical strength H yields the increase of the ve-

locity and temperature distributions.

• increasing the electrical strength parameter H yields an effect opposite to that of the

Hartmann number Ha.

• for large and small values of K, the second-grade non-Newtonian fluid flows faster than

the third-grade non-Newtonian fluid.

• The fluid velocity and temperature distribution are found to decrease with the in-

creasing third-grade parameter and attains maximum value when the fluid is of second

grade (Λ = 0).
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Figure 1: Schematic of the physical modeling of EMHD micro-pump through a porous micro-channel, (a)

3D view of the EMHD micro-pump, (b) Duct’s crosssection of the EMHD micro-pump
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Figure 2: Velocity profiles with different values of permeability of a porous medium K when Ha = 1,H =

2, P = 1, for the case (a) small values of K (b) large values of K
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Figure 3: Velocity profiles with different values of constant pressure P when Ha = 1, H = 2,Λ = 0.01, for

the case (a) small permeability (K = 0.01) (b) large permeability (K = 1)
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(b) 

 

Figure 4: Velocity profiles with differen values of electrical strength parameter H when Ha = 1, P = 1,

Λ = 0.01 for the case (a) small permeability (K = 0.01) (b) large permeability (K = 1)
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Figure 5: Velocity profiles with different values of Hartmann number Ha when P = 1,H = 2, Λ = 0.01, for

the case (a) small permeability (K = 0.01) (b) large permeability (K = 1)
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Figure 6: Velocity profiles with different values of different non-Newtonian parameter Λ when Ha = 1,H =

2, P = 1, for the case (a) small permeability (K = 0.01) (b) large permeability (K = 1)
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(b) 

 

Figure 7: Temperature profiles with different values of thermal radiation when Ha = 1,H = 2, P = 1,γ1 =

0.01, γ2 = 0.2, γ3 = 0.2,Λ = 0.01, and K = 0.1 for the case (a) small values of Nr (b) large values of Nr
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Figure 8: Temperature profiles with different values of Hartmann number Ha when Ha = 1, P = 1,

γ1 = 0.01, γ2 = 0.2, γ3 = 0.2,Λ = 0.01, for the case (a) without thermal radiation (Nr = 0) (b) with thermal

radiation ( Nr = 0.5)
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(b)

 

Figure 9: Temperature profiles with different values of electrical strength parameter H when H = 2, P =

1,γ1 = 0.01, γ2 = 0.2, γ3 = 0.2,Λ = 0.01, for the case (a) without thermal radiation (Nr = 0) (b) with

thermal radiation (Nr = 0.5)
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(b)

 

Figure 10: Temperature profiles with different values of Brinkman number γ1 when Ha=1,H = 2, P =

1, γ2 = 0.2, γ3 = 0.2,Λ = 0.01, for the case (a) without thermal radiation (Nr = 0) (b) with thermal

radiation (Nr = 0.5)
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